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The paper proposes an amplitude reduction method for parametric resonance with a

new type of dynamic vibration absorber utilizing quadratic nonlinear coupling. A main

system with asymmetric nonlinear restoring force and harmonic excitation causes

parametric resonance in the system. In contrast with autoparametric vibration

neighborhood of twice that of the main system. For such a vibration absorber, we

investigate the effect on the amplitude reduction for a parametrically excited main

system. Analytical results using the method of multiple scales show that the amplitude

of parametric resonance is reduced by the effect of the vibration absorber. The

experimental results by a simple apparatus indicate that the parametric resonance is

stabilized by the effects of both vibration absorber and Coulomb friction of the main

system. Moreover, numerical results considering the Coulomb friction of the main

system show that the amplitude of parametric resonance becomes close to zero by the

proposed vibration absorber.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Principal parametric resonance occurs in systems having time-varying coefficients through pitchfork bifurcation in the
case when the excitation frequency is in the neighborhood of twice the natural frequency of the system. The book written
by Nayfeh and Mook [1] showed the mechanism of parametric resonance and history of research concerning this one, i.e.,
Faraday who has been the first to recognize the phenomenon of parametric resonance and Melde who performed the first
serious experiments on parametric resonance. From physical and engineering points of view, the parametric resonance has
been attractive, and many researches on the phenomena and their utilization have been continuously performed until
now. Pratiher et al. [2] investigated parametric instabilities of a cantilever beam with magnetic field and axial load. Huang
and Kuang [3] studied the parametric resonance instabilities in a drilling process. Shaw and Baskaran [4] investigated the
use of parametric resonance to improve filtering characteristics in microelectromechanical filters. Piccardo and Tubino [5]
analyzed the excessive lateral sway motion caused by crowds walking across footbridges using parametric excitation
mechanism. Racz and Scott [6] investigated the parametric instability in a finite-length rotating cylinder subjected to
periodic axial compression by small sinusoidal oscillations of the piston.

In addition to the analysis of parametric resonance, control methods are also studied. Mustafa and Ertas [7] dealt with
the dynamics and bifurcations of a large flexible column with a tip mass-pendulum under parametric excitation. They
ll rights reserved.
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revealed that the column amplitude shows saturation and the pendulum acts as a vibration absorber in the case when the
natural frequency of the pendulum is a half that of the column. Yabuno et al. [8] stabilized the parametric resonance by
exploiting the effect of a low static friction acting at the pivot point of attachment of a pendulum to the beam tip. The low
static friction acts to shift the unstable region where the parametric resonance is activated in the amplitude–frequency
plane. Lacarbonara et al. [9] developed a control strategy using open-loop resonance cancellation for a hinged–hinged
shallow arch, which is parametrically excited by longitudinal end-displacement. Autoparametric vibration absorber [10] is
well known as a nonlinear vibration absorber (see [11,12] for the comprehensive survey of the characteristics of control
method). While the autoparametric vibration absorber is applicable to control of primary resonance, Yabuno et al. showed
that an autoparametric vibration absorber cannot stabilize the parametric resonance, but the autoparametric coupling
produces chaotic motions in the main system. Furthermore, they proposed an active actuation pendulum as the vibration
absorber which is based on open-loop resonance cancellation [13]. In order to overcome such a drawback of the
autoparametric vibration absorber, we proposed a new type of nonlinear dynamics vibration absorber in [15], and
theoretically and experimentally confirmed the validity for the primary resonance. In this paper, we investigate the
effectiveness for parametric resonance.

Contrast with the conventional nonlinear vibration absorber, i.e., autoparametric vibration absorber in which the
natural frequency of the absorber is tuned to be a half the natural frequency of the main system, the natural frequency of
the proposed absorber is tuned to be twice the natural frequency of the main system. We introduce a new geometric
configuration of vibration absorber in order to induce quadratic nonlinear coupling. The pendulum-type vibration absorber
is connected to the main system through a link and excited at twice the response frequency of the main system. Because
the usual autoparametric vibration absorber has the trivial steady state, the motion can be trapped by Coulomb friction
acting on the absorber (for example, the effect of pendulum-type vibration absorber is vanished by the Coulomb friction at
the pivot point of the pendulum) and it cannot occasionally work as the vibration absorber. On the contrary, because the
proposed vibration absorber has no trivial steady state, it works independent of the Coulomb friction. In this paper, the
validity of the proposed absorber for the parametric resonance is confirmed analytically using the method of multiple
scales and experimentally using a simple apparatus. Analytical results show that the steady-state amplitude of parametric
resonance is reduced by the effect of the vibration absorber. Furthermore, from the experimental results, we indicate that
the parametric resonance is stabilized by the effect of both vibration absorber and Coulomb friction, which exists
inherently in the main system. Numerical results considering Coulomb friction of the main system by Runge–Kutta method
show that the amplitude of parametric resonance becomes close to zero.
2. Stabilization of parametric resonance

2.1. Equation of motion

We consider a main system subjected to magnetic forces as a nonlinear restoring force is shown in Fig. 1 [14]. The
dynamics is widely corresponding to those of the systems subjected to asymmetric nonlinear restoring force [14]. We set
the origin O of a static Cartesian coordinate x–y–z at a point p on the main system in the static equilibrium state. The mass
M can be moved freely only in the y-direction and its motion is expressed by the displacement y of the point p from the
origin O in the y-direction. We move magnet A as y0 ¼ aecosNt in the y-direction as the external excitation. The repulsive
force by same magnetic pole acts between magnet B0 on the main system and fixed magnet A0, and between magnet B on
the main system and moved magnet A. We propose the following absorber [15], which oscillates with twice the response
y
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Fig. 1. Analytical model with nonlinear dynamic vibration absorber. (a) Main system with absorber, (b) absorber.
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frequency of the main system. A mass m0 is connected to the point p on the main system through a link and can be moved
freely only in the x-direction and is excited at twice the response frequency of the main system. A pendulum with tip mass
m is attached vertically to the mass m0 as a nonlinear dynamic vibration absorber and its motion is expressed in terms of
the angle y about the point q on the z–x plane. In contrast with autoparametric vibration absorber, the pendulum is always
excited by the motion of the main system and is not trapped by the Coulomb friction, which exists at the pivot point.

The equation of motion of the main system without absorber is obtained [15] as follows:

M
d2y

dt2
¼�ðKR1þKL1Þy�ðKR2�KL2Þy

2�ðKR3þKL3Þy
3þKR1y0þ2KR2y0y�KR2y2

0þ3KR3y0y2�3KR3y2
0yþKR3y3

0: (1)

The repulsive force FB acting on the magnet B by the magnet A in Fig. 1(a) is calculated by Coulomb’s law. The coefficients
of linear, quadratic, and cubic terms by Taylor expansion of FB with respect to y are KR1, KR2, and KR3, respectively. Similarly,
the repulsive force FB0 acting on the magnet B0 by the magnet A0 is calculated by Coulomb’s law. The coefficients of linear,
quadratic, and cubic terms by Taylor expansion of FB0 with respect to y are KL1, KL2, and KL3, respectively. The derivation of
Eq. (1) and the equation including the effect of the absorber, Eqs. (2) and (3) mentioned later, is described in [15].

The equation of motion of the main system and the absorber in the case when an absorber is connected to the main
system through a link is obtained [15] up to cubic terms as follows:

Mþ
ðm0þmÞ

L2
y2

� �
d2y

dt2
þ
ðm0þmÞ

L2
y

dy

dt

� �2

þ
ml

L

d2y
dt2

yþðKR1þKL1ÞyþðKR2�KL2Þy
2þðKR3þKL3Þy

3

¼ KR1y0þ2KR2y0y�KR2y2
0þ3KR3y0y2�3KR3y2

0yþKR3y3
0; (2)
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6
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2.2. Parametric resonance in the case without control

First, we analyze the parametric resonance in the case without control, i.e., absorber is not in action and then y is fixed
to zero, using the method of multiple scales. The dimensionless equation of motion of Eq. (1) normalized by yst and
T ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKR1þKL1Þ=M

p
is

€yþ2m1
_yþð1þ2aekR2cosntÞyþa2y2þa3y3 ¼ aekR1cosnt�a2

e kR2cos2ntþa3
e kR3cos3nt�3a2

e kR3cos2ntyþ3aekR3cosnty2;

(4)

where the dot indicates the derivative with respect to the dimensionless time t�, and m1 is the damping coefficient of the
main system. Also, a2 and a3 are the coefficients of Taylor expansion of the magnetic force with respect to y�2 and y�3,
respectively. The asterisk ð�Þ is omitted for simplification. The dimensionless parameters in Eq. (4) are as follows:

t� ¼
t

T
; y� ¼

y

yst
; n¼NT ; a2 ¼

ðKR2�KL2Þyst

ðKR1þKL1Þ
; a3 ¼

ðKR3þKL3Þy
2
st

ðKR1þKL1Þ
;

kR1 ¼
KR1

KR1þKL1
; kR2 ¼

KR2yst

ðKR1þKL1Þ
; kR3 ¼

KR3y2
st

ðKR1þKL1Þ
; a�e ¼

ae

yst
: (5)

The values of the dimensionless parameters used in the theoretical analyses correspond to those in the subsequent
experiment: m1 ¼ 0:0155, a�e ¼ 0:1212, kR1 ¼ 0:507566, kR2 ¼�0:442311, kR3 ¼ 0:2576, a2 ¼�0:0432638, a3 ¼ 0:512554.

In Eq. (4), the damping force is assumed to be small. Using the order parameter 0oe51, we put m1 ¼ em̂1ðm̂1 ¼ Oð1ÞÞ,
and the excitation amplitude of magnet A is assumed to be small compared with the gap between magnets A and B in the
initial static equilibrium state and set as a�e ¼ eâeðâe ¼Oð1ÞÞ. We define a detuning parameter s¼ eŝðŝ ¼Oð1ÞÞ such as
n¼ 2þeŝ to express the nearness of the parametric resonance and introduce the multiple time scales of t0 ¼ t, t1 ¼ e1=2t,
and t2 ¼ et. We expand y as

y¼ e1=2y1þey2þe3=2x3 (6)

and apply the method of multiple scales. Then, the first-order approximate solution of Eq. (4) is obtained as

y¼ a1cos
n
2

t�y1

� �
þOðeÞ; (7)

where a1 ¼ e1=2â1. Time variations of the amplitude and phase are governed with

da1

dt
¼�m1a1�

kR2

2
�

kR1a2

2ð1�n2Þ

� �
aesin2y1a1; (8)
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24
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2Þa
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For the steady-state solution, letting da1=dt¼ dy1=dt¼ 0, and Eqs. (8) and (9) are combined into as

a1st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s724

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kR2

2
þ

kR1a2

2ðn2�1Þ

� �2

a2
e�m2

1

s

9a3�10a2
2

vuuuut
: (10)

Fig. 2 shows the frequency response curve in the case when absorber is not in action.

2.3. Amplitude reduction of parametric resonance by proposed absorber

We analyze the dynamics of the main system in the case with control, i.e., absorber is in action, using the method of the
multiple scales. Normalized equations of motion of Eqs. (2) and (3) by yst and T ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKR1þKL1Þ=M

p
are

€yþ2m1
_yþð1þ2aekR2cosntÞyþa2y2þa3y3 ¼�c1ðy _y

2
þy2 €yÞ�c2

€yyþaekR1cosnt�a2
e kR2cos2nt

þa3
e kR3cos3nt�3a2

e kR3cos2ntyþ3aekR3cosnty2; (11)

€yþ2m2
_yþo2

yy¼�c3y €y�c3 _y
2
þc4aecosnty�1

6o
2
yy

3; (12)

where the dot indicates the derivative with respect to the dimensionless time t�, and m2 is the damping coefficient of the
absorber, respectively. Also, c1, c2, c3, and c4 are the coefficients determined by system parameters, which are expressed as
follows:

c1 ¼
m�total

L2
; c2 ¼

m�l�

L
; c3 ¼

1

Ll�
; c4 ¼

n2

l�
; (13)

where m�total ¼ ðmþm0Þ=M, m� ¼m=M, l� ¼ l=yst, and L¼ L=yst. The main system and the absorber are nonlinearly coupled
through term �c2

€yy in Eq. (11) and terms, �c3y €y and �c3 _y
2, in Eq. (12). Then, in Eq. (12), the motion of the absorber is

excited by the terms �c3y €y and �c3 _y
2, which act as equivalent external excitation to the absorber. When the natural

frequency of the absorber is tuned to be close to twice the natural frequency of the main system, i.e., oy � 2, the resonance
in absorber occurs by the terms, �c3y €y and �c3 _y

2, in Eq. (12) because the frequency of these terms is near 2. Through the
quadratic nonlinear coupling, the energy of the main system is transferred to the absorber and finally the resonance
amplitude of the main system is reduced.

The damping force of the absorber is assumed to be small. Using the order parameter 0oe51, we put
m2 ¼ em̂2ðm̂2 ¼ Oð1ÞÞ, and we define a detuning parameter r¼ e1=2r̂ðr̂ ¼ Oð1ÞÞ such as oy ¼ 2þe1=2r̂ to express the tuning
of the natural frequency of the absorber. We expand y and y as

y¼ e1=2y1þey2þe3=2y3; (14)

y¼ e1=2y1þey2þe3=2y3: (15)

By introducing multiple time scales of t0 ¼ t, t1 ¼ e1=2t, and t2 ¼ et, we obtain the following equations by equating the
coefficients of Oðe1=2Þ, OðeÞ, and Oðe3=2Þ to zero.

Order e1=2

D2
0y1þy1 ¼ 0; (16)

D2
0y1þo2

yy1 ¼ 0: (17)
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Fig. 2. Frequency response curve in case absorber is not in action: —— stable, – – – unstable.
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Order e

D2
0y2þy2 ¼�2D0D1y1�a2y2

1�c2y1D2
0y1þ âekR1cosnt0; (18)

D2
0y2þo2

yy2 ¼�2D0D1y1�c3y1D2
0y1�c3ðD0y1Þ

2: (19)

Order e3=2

D2
0y3þy3 ¼�2D0D1y2�D2

1y1�2D0D2y1�2m̂1D0y1�2âekR2cosnt0y1�2a2y1y2

�a3y3
1�c1y1ðD0y1Þ

2
�c1y2

1D2
0y1�c2y1D2

0y1�2c2y1D0D1y1; (20)

D2
0y3þo2

yy3 ¼�2D0D1y2�D2
1y1�2D0D2y1�2m̂2D0y1�2c3D0y1D0y2�2c3D0y1D1y1

�c3y1D2
0y2�c3y2D2

0y1�2c3y1D0D1y1þ
o2

y
6

y3
1þc4âecosnt0y1; (21)

where Dn ¼ q=qtn. The solution of Eqs. (16) and (17) is written in the form

y1 ¼ A1ðt1; t2Þexpðit0ÞþA1ðt1; t2Þexpð�it0Þ; (22)

y1 ¼ A2ðt1; t2Þexpðioyt0ÞþA2ðt1; t2Þexpð�ioyt0Þ: (23)

Substituting Eqs. (22) and (23) into Eqs. (18) and (19), we obtain the condition for the elimination of secular terms in
Eqs. (18) and (19) as follows:

D1A1þ i
o2

yc2

2
A1A2expðir̂t1Þ ¼ 0; (24)

D1A2þ i
c3

oy
A2

1expð�ir̂t1Þ ¼ 0: (25)

Also, substituting Eqs. (22) and (23), and particular solutions of y2 and y2, into Eqs. (20) and (21), we obtain the condition
for the elimination of secular terms in Eqs. (20) and (21) as follows:

D2A1þ m̂1A1þc2oyA1ðD1A2Þexpðir̂t1Þþ i
5

3
a2

2�
3

2
a3�c1

� �
A2

1A1�
i

2
D2

1A1�i
a2

2ð1�n2Þ
kR1þ

kR2

2

� �
âeA1expðiŝt2Þ ¼ 0; (26)

D2A2þ m̂2A2þ
2c3

oy
A1ðD1A1Þexpð�ir̂t1Þ�

i

2oy
D2

1A2þ i
c2c3o2

yð1þ2oyÞ

2ðo2
yþ2oyÞ

A1A1A2þ
i

4
oyA2

2A2 ¼ 0: (27)

Using transformation

A1 ¼
1

2
â1exp i

ŝt2

2
þy1

� �
; A2 ¼

1

2
â2expðiðŝt2�r̂t1þy2ÞÞ; (28)

y and y are expressed as

y¼ a1cos
n
2

tþy1

� �
þOðeÞ; (29)

y¼ a2cosðntþy2ÞþOðeÞ; (30)

where a1 ¼ e1=2â1 and a2 ¼ e1=2â2. The time variations of the amplitude and phase of the main system and the absorber are
governed with the following equations:

da1

dt
¼�m1a1þ

c2o2
yr

8
a1a2sinð2y1�y2Þ

o2
yc2

4
a1a2sinð2y1�y2Þþ

a2

2ð1�n2Þ
þ

1

2
kR2

� �
aea1sin2y1; (31)

a1
dy1

dt
¼�

o2
yc2

4
a1a2cosð2y1�y2Þ�

s
2

a1�
o4

yc2
2

32
a1a2

2þ
c2ro2

y
8

a1a2cosð2y1�y2Þ�
1

8

10

3
a2

2�3a3�2c1� 1þ
oy

4

� �
c2c3

� �
a3

1

þ
a2

2ð1�n2Þ
þ

1

2
kR2

� �
aea1cos2y1; (32)

da2

dt
¼�m2a2þ

rc3

oy
a2

1cosð2y1�y2Þ
c3

2oy
a2

1sinð2y1�y2Þ; (33)

a2
dy2

dt
¼ ðsþrÞa2�

c3

2oy
a2

1cosð2y1�y2Þ�
c2c3

16
þ

c3oy

4
�

c2c3oyð1þ2oyÞ

8ðo2
yþ2oyÞ

 !
a2

1a2þ
rc3

8o2
y

a2
1cosð2y1�y2Þ�

oy

16
a3

2: (34)
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For the case r¼ 0 ðoy ¼ 2Þ, the steady-state amplitude of the main system and the absorber are analytically expressed as

a1st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s724

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kR2

2
þ

kR1ðkR2�kL2Þ

2ðn2�1Þ

� �2

a2
e�m2

1

s

9a3�10a2
2þS

vuuuut
; (35)

a2st ¼ 4c3�
7

4
c2c3

� �
a1st; (36)
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where S¼ 6c1þ
3
2 c2c3þ48ðc2

2þc3Þ�21ðc3
2þc3Þ. From Eqs. (31) and (32), we notice that the absorber affects the motion of

the main system. Comparing between Eqs. (10) and (35), the effect of the absorber appears at the denominator in Eq. (35)
as the value of S and depends on sign and magnitude of this term. The amplitude of parametric resonance is reduced by the
effect of the absorber in the case when S is positive large value.

Fig. 3 shows frequency response curves of the main system and the absorber in the case when the absorber is in action.
The solid and broken lines indicate stable and unstable steady-state amplitude, respectively. While the excitation
frequency in which parametric resonance occurs is the same as that in Fig. 2, the resonance amplitude of the main system
is reduced by the effect of the absorber. For instance, the resonance amplitude of the main system at the excitation
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Fig. 5. The influence of mass ratio on response of the main system.
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frequency n¼ 2 ðs¼ 0Þ in the cases when absorber is not in action and in action, respectively, is 0.34 and 0.20, and the
amplitude reduction ratio becomes about 42 percent.

The system parameters which can be changed in the experiment are the length of link L and the mass ratio m� between
the main system (mass M) and the absorber in the dimensionless parameters c1, c2, and c3. Fig. 4 shows the influence of
length of link on effectiveness of absorber for the case of m� ¼ 0:23 corresponding to the subsequent experimental
parameters. As L becomes small, the response amplitude of the main system becomes small because S in Eq. (35) becomes
large. Fig. 5 shows the influence of the mass ratio m� for the case of L¼ 1:21. Also, it can be seen from Eq. (35) that the
mass ratio becomes large, the response amplitude of the main system gets smaller. For instance, the response amplitude of
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the main system for the case of L¼ 0:9 in Fig. 4 is reduced from 0.34 to 0.13 about 62 percent, and for the case of
m=M¼ 0:5 in Fig. 5 is reduced from 0.34 to 0.16 about 53 percent.

In Fig. 6, we show variations of the amplitude of the main system a1ð ¼ e1=2â1Þ and the absorber a2ð ¼ e1=2â2Þ with
excitation amplitude ae. The solid and dashed line, respectively, represent stable and unstable steady-state amplitude. The
upper and lower lines, respectively, indicate the response amplitude of the main system in the cases when absorber is not
in action and in action. As ae increases from zero to the circle (ae ¼ 0:069), parametric resonance does not occur, and
supercritical pitchfork bifurcation happens at the circle. The amplitude of parametric resonance is reduced by the effect of
the absorber in all excitation amplitude.
3. Experimental results

We show the experimental apparatus in Fig. 7. The main system M, which is subjected to repulsive magnetic forces
from both sides, can move freely in the y-direction on a slide bearing that is mounted on the horizontal plane. We move
magnet A in the y-direction as y0 ¼ aecosNt by an electromagnetic shaker (Type 513-B; EMIC Corp). A mass m0 is connected
to the main system by a link; it can move freely in the x-direction. The motions of magnet A and the main system are
measured using laser displacement sensors (LB-01; Keyence Corp).

A pendulum with tip mass m, whose natural frequency is tuned to be twice that of the main system, is supported by a
radial bearing. The angle is measured using a rotary encoder (RXB1000; Nikon Corp). By the connection between the
absorber and the main system by the link, the pendulum of the absorber is excited with twice the response frequency of
the motion of the main system.

The dimensions of magnets A and A0 are 50� 50� 18 mm, and the dimensions of B is 40� 20� 10 mm and B0 is
40� 40� 10 mm. The dimensions for the main system and the absorber are as follows: yst ¼ 33 mm, M¼ 0:562 kg,
m0 ¼ 0:25 kg, m¼ 0:13 kg, ae ¼ 40 mm, L¼ 40 mm, l¼ 32 mm, lM ¼ 182 mm, l0 ¼ 100 mm. The natural frequencies of the
main system and the absorber are Oy=2p¼ 1:33 Hz, and Oy=2p¼ 2:66 Hz, respectively.
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3.1. Experimental bifurcation diagram and the effect of Coulomb friction

Fig. 8 shows frequency response curves of the parametric resonance in the case when absorber is not in action (absorber
is mechanically fixed by bolt) and in action (absorber is released from fixation). Circles indicate the steady-state amplitude
in the case that absorber is not in action and triangles indicate the steady-state amplitude in both cases that absorber is in
action and not in action. In this section, we discuss the case that absorber is not in action.

In the case of N=2p42:57 Hz, there are two stable steady-state amplitude; one is zero amplitude denoted by triangles,
and the other one is finite amplitude denoted by circles in the state where parametric resonance is produced. Hence,
depending on the magnitude of initial condition or disturbance, parametric resonance is produced, regardless of Coulomb
friction acting on the main system due to the slide bearing.

However, the response amplitude of the main system below excitation frequency N=2p¼ 2:57 Hz in the case when
absorber is not in action becomes suddenly close to zero and the response amplitude below 8 mm in this experimental
t

-0.4

-0.2

0.0

0.2

0.4

10008006004002000
t

y 0

-0.4

-0.2

0.0

0.2

0.4

10008006004002000
t

y
θ

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

10008006004002000

Fig. 11. Time histories in the case when absorber is in action (yð0Þ ¼ 0:5, _yð0Þ ¼ 0:2): (a) main system, (b) absorber, (c) excitation.



ARTICLE IN PRESS

H. Jo, H. Yabuno / Journal of Sound and Vibration 329 (2010) 2205–2217 2215
apparatus is not observed. This difference between Fig. 8 and the analytical result in Fig. 2 may be due to the reason why
the analytical approach does not consider the Coulomb friction. It is numerically examined later that both effect of the
Coulomb friction acting on the main system and action of the absorber reduce the amplitude of the parametrically excited
main system to zero.
3.2. Stabilization of parametric resonance

Fig. 9 shows experimentally obtained time histories of the main system and the absorber in the case when absorber is
not in action and in action. At t� 30 s, the absorber is released from fixation and is excited by the motion of the main
system. Then, the response amplitude of the main system becomes close to zero. As seen from Fig. 9(b), the absorber works
only in the transient state after the release where the main system changes the steady-state amplitude from finite
t
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magnitude to the trivial one (zero amplitude). If the absorber is not released, the parametric response is kept also after
t� 30 s.

Fig. 10 shows experimentally obtained spectral analyses of the main system. Fig. 10(a) and (b) show the cases that the
absorber is not in action and in action, respectively. P1 in Fig. 8 is the amplitude in the interval of 0–30 of time history in
Fig. 9(a) and Fig. 10(a) is the spectral analysis in that period. P2 in Fig. 8 is the amplitude in the interval of 60–80 of that in
Fig. 9(b) and Fig. 10(b) is the spectral analysis in that period. The magnitude of the frequency component due to the
parametric resonance remarkably decreases in spectral analysis.

When the main system is stabilized, the amplitude of the absorber is zero. The absorber does not act in a way as to
counter the sinusoidal excitation. The excitation externally keeps to excite the main system through the first term in the
right hand side of Eq. (4). However, because the excitation frequency is far from the linear natural frequency, the response
amplitude is very small. The frequency component is experimentally observed as the excitation component in Fig. 10(b).
3.3. Stabilization mechanism for main system subjected to Coulomb friction

As shown in Fig. 3, the amplitude is reduced, but is not close to zero in the analytical result without considering
Coulomb friction. In experiment, it appears that the almost suppression is carried out by inherently existing Coulomb
friction in the main system, in addition to the effect of the absorber. In order to examine the influence of small Coulomb
friction, which inherently exists in main system, we numerically analyze it using Runge–Kutta method (analytical
approach for parametrically excited system subjected to Coulomb friction is an open problem, while an analytical approach
for self-excited system subjected to Coulomb friction is proposed in [16]).

The results are obtained by integrating Eq. (11) including the term of fkð _yÞ where fk denotes magnitude of Coulomb
friction [17]. The magnitude of Coulomb friction in experiment is 0.002. Figs. 11 and 12 show time histories of the main
system, absorber, and excitation, and Fig. 13 shows spectrum analyses of the main system. Figs. 11 and 13(a) represent the
case that absorber is in action and the Coulomb friction is not considered. The resonance amplitude of the main system is
reduced by the effect of the absorber but cannot be minimized as analytically predicted without considering Coulomb
friction in Section 2.3. Figs. 12 and 13(b) represent the case that absorber is in action and the Coulomb friction is
considered. Parametric resonance of the main system is minimized by the effect of both the absorber and the Coulomb
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friction. The absorber works to reduce the response amplitude in the range where the nontrivial steady-state amplitude
does not exist due to the Coulomb friction, i.e., below 8 mm in the previous experiment. As a result, the parametric
resonance is stabilized to be zero amplitude.

4. Conclusions

In this paper, we have discussed the amplitude reduction method of parametric resonance using a nonlinear dynamic
vibration absorber. This method utilizes quadratic nonlinear coupling between the main system and the absorber, where
the absorber is not autoparametrical but externally excited. To realize such a nonlinear coupling, we connect geometrically
a pendulum, whose natural frequency is twice the natural frequency of the main system, with the main system. Analytical
results using the method of multiple scales, numerical results using Runge–Kutta method, and experimental results show
that the proposed absorber is effective in reducing parametric resonance amplitude. The detail results are summarized as
follows:
(1)
 Analytical results show that the amplitude of the parametric resonance is reduced by the effect of the proposed
vibration absorber, whose natural frequency is twice that of the main system.
(2)
 Experimental results show that steady-state amplitude of the parametric resonance becomes close to zero by the
absorber. The stabilization is carried out by both effects of the proposed absorber and the Coulomb friction acting on
the main system.
(3)
 System parameters which influence on effectiveness of the absorber are length of the link and mass ratio between the
main system (mass M) and the absorber. As length of the link becomes small and mass ratio becomes large, the
effectiveness of the absorber becomes large.
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